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Abstract

Multiscale modeling of polymers exchanges information between coarse and fine

representations of molecules to capture material properties over a wide range of spatial

and temporal scales. Restoring details at a finer scale requires to generate informa-

tion following embedded physics and statistics of the models at two different levels of

description. Techniques designed to address this persistent challenge balance among

accuracy, efficiency, and general applicability. In this work, we present an image-based

approach for structural backmapping from coarse-grained to atomistic models with

cis-1,4 polyisoprene melts as an illustrative example. Through machine learning, we

train conditional generative adversarial networks on the correspondence between con-

figurations at the levels considered. The trained model is subsequently applied to pro-

vide predictions of atomistic structures from the input coarse-grained configurations.

The effect of different data representation schemes on training and prediction quality

is examined. Our proposed backmapping approach shows remarkable efficiency and

transferability over different molecular weights in the melt based on training sets con-

structed from oligomeric compounds. We anticipate that this versatile backmapping

approach can be readily extended to other complex systems to provide high-fidelity

initial configurations with minimal human intervention.

Multiscale modeling is critical in diverse fields of research, including physics, chemistry,

biology, and materials science and engineering.1–4 Developing multiscale techniques in a hi-

erarchical and consistent manner provides a comprehensive description of materials from

bottom-up, and as a predictive tool, permits rational design of materials in silico. Coarse-

graining of an atomistic/microscopic model simplifies the representation of a physical system

by reducing the degrees of freedom, and hence, drastically accelerates calculations. In con-

sequence, coarse-graining allows simulations to reach larger temporal and spatial scales that

are inaccessible to detailed models retaining a fine level of description. Systematic meth-

ods to construct coarse-grained (CG) models by passing information from fine to coarse

levels continue to develop and improve over recent years.5–9 This is particularly critical for
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macromolecular systems, whose structural properties and dynamical behavior span over a

vast range of length and time scales.10,11 Commercial grade polymeric materials consist of

molecules with hundreds to thousands of repeat units that necessitate the simulation stud-

ies of large-scale systems, which evolve in exceedingly slow rates. As a result, systematic

coarse-graining, based on atomistic simulations of small molecules, facilitates the quantitative

interrogation of conformational and thermodynamic properties of industrial polymers, such

as polystyrene,12,13 polyethylene,14 polyisoprene,15–17 and polybutadiene,18–21 at molecular

weights where atomistic modeling presents insurmountable demands even for state-of-the-art

high performance computing resources.

For many applications, there is a need to study large systems with long correlation

times and also fine details; examples include the studies of local structure and dynamics

of long macromolecules at the interface with solid surfaces,15,22 cross-linking reactions that

depend on the atomistic-level configuration of specific repeat units,23 etc. In those cases,

high-fidelity backmapping is essential for closing the loop starting from the atomistic model

(AT) to a derived CG model and then going back to the detailed AT description. Although

the accuracy of such a scheme is intimately coupled with the capability of the CG model

to propose realistic structures, it is important to note that equally essential attributes are

efficiency, flexibility, and broad applicability with minimal human intervention. Given the

multitude of the already existent chemically-specific CG models, a general backmapping

technique, readily applicable with little modification that is not necessarily tied to the tech-

nique used to develop the CG force fields in the first place, is highly desirable. Several studies

have been focused on addressing this need with different strategies, based on random map-

ping, geometrical and mechanical considerations, Bayesian inference, hybrid scheme (using a

time-dependent switching function), and subsequent position-restrained molecular dynamics

(MD) or Monte Carlo relaxations.13,15,24–34 However, those strategies more or less rely on

maintaining libraries of molecular structures or force fields that are system specific, while

often facing a delicate trade-off between efficiency and accuracy.

3    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
12

32
0



For polymers, CG models commonly preserve chemical specificity by promoting local

configurations dictated by bond, bending angle, and dihedral angle potentials that are de-

signed to match specific order parameters with atomistic structures. Through backmapping,

these local configurations can be translated to fine structures absent in the CG configuration

via sequential building of successive repeat units. Nevertheless, subsequent procedures are

often needed to increase the quality of the resulting structures that are specific to the sys-

tem at hand (as for example, in our previous work with polyisoprene15 and similar studies

with polystyrene26 where dihedral angles in the retrieved atomistic models required further

refinement). Such efforts take significant insight and algorithmic design, which are not gen-

erally applicable. In this work, we present a general method for backmapping polymer CG

models, based on machine learning. While machine learning is currently being exploited in

forward coarse-graining studies,35–39 we reveal its versatility in the direct application of struc-

tural backmapping. Recently, a study on backmapping polystyrene oligomers constructed

deep convolutional neural networks embedded with the force field description and utilized

machine learning to predict atom placement sequentially through recurrent training.40 By

contrast, the proposed method in this work separates particle positions from the molecular

topology and force field, and hence, avoids tedious bookkeeping of molecular details during

the reconstruction while making predictions in groups. We expect that this method can be

easily modified to apply to a broad class of polymeric materials given existing CG models.

Noting that any backmapping procedure would result in “imperfections”, our effort herein

is to develop a systematic, model agnostic procedure that excels in flexibility and efficiency.

We formulated the backmapping from CG to atomistic as an image-to-image translation

problem that translates “low-resolution” CG pictures to “high-resolution” atomistic pictures

with fine details. This problem is essentially analogous to super-resolution,41 while learning-

based generative methods should be sought.42 The rationale behind our approach is to use

machine learning to capture complex statistical relationships between a CG model and the

atomistic counterpart, in terms of probability distributions, through training with substan-
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tial samples. In the class of generative models, generative adversarial networks (GANs)43

present a powerful deep learning approach, which simultaneously trains two types of arti-

ficial neural networks, namely, generator and discriminator, in a synergistic and opposing

manner. Specifically, a generator network is trained to produce synthetic data following the

same statistics as the training dataset, while a discriminator network learns to evaluate the

authenticity of generated data as if they belong to the real dataset or not. Ideally, the quality

of generated prediction improves through training without human intervention.

We employed modeling of cis-1,4 polyisoprene (PI) melts as an illustrative example and

adopted a general-purpose conditional GAN model, “Pix2Pix”,44 for the image-to-image

translation. Pix2Pix captures the mapping between paired images through training on a

corresponding dataset, predicts pixels from pixels, and synthesizes output images with con-

ditioning on the input ones. Specifically, it utilizes a U-Net architecture45 as generator and

a convolutional “patchGAN” classifier as discriminator, which skips tweaking the loss func-

tion in machine learning and is found to be effective on a wide variety of image prediction

problems.44 In this study, the training sets were prepared based on atomistic configura-

tions from MD simulation trajectories. The mapped CG configurations were employed as

input while the atomistic counterpart served as ground truth. After training the generative

model, it was applied to data outside of the training sets to make backmapping predic-

tions via the generator. The efficiency of this machine learning approach was examined and

the prediction quality was evaluated. We further compared the results between machine

learning and a commonly used “random mapping” method, which generates configurations

using random rotation of repeat units around their center-of-mass (COM) locations. The

outcome demonstrates that the proposed image-based machine learning approach presents

significant advantages by introducing correlations absent in the random mapping method,

without sacrificing efficiency and general applicability.

A united-atom (UA) representation was selected for the atomistic model of PI where

each carbon with directly bonded hydrogens is lumped into a single interaction site. In
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this simplified atomistic representation, every PI monomer is defined by the positions of five

particles (Figure 1a). The implemented UA force field has been extensively described in

past studies where it was shown to faithfully reproduce material properties.46–49 Our CG

mapping herein, places a CG bead at the COM of each monomer (Figure 1a). The CG

force field was developed using the Iterative Boltzmann Inversion (IBI) method,15,50–52 a

technique that has been widely used for systematic coarse-graining of atomistic polymer

models. Detailed results and validation of the CG mapping are presented in Figures S1 and

S2 in the supporting information (SI).

A CG configuration comprises of coordinates of CG beads representing monomers for each

polymer chain in the system (Figure 1a). Backmapping involves generating atom coordinates,

while molecular topology (describing the architecture and connectivity among atoms) can

be extracted separately and treated as metadata that is not required for the coordinate

generation. To achieve high-fidelity backmapping, the statistical relationships between CG

and UA configurations need to be captured. For instance, the arrangement of atom positions

in a polymer chain should follow the correlations among successive CG beads along the

chain contour, as expressed by bond distances, angles, and dihedrals, etc. Nevertheless,

these relationships are mostly ignored in random mapping, and can only be partially traced

by the sequential building of polymers (via stochastic sampling and local optimization in

a system-specific manner).15,34 By contrast, machine learning, in principle, parses hidden

representations of the full relationships and casts them into neural networks, regardless of

chemical species and force fields.

To highlight the correlations embedded in spatial configurations, we exploited an adaptive

reference strategy for establishing the correspondence between CG and UA representations.

Specifically, CG beads of monomers along the chain contour were referenced by vectors from

the COM of a polymer fragment or entire chain (Figure 1a), instead of the absolute positions

in space. Meanwhile, UA particles were referenced by vectors that depict relative positions

within individual CG bead. As illustrated in Figure 1c, three UA reference schemes were
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Figure 1: (a) Schematic illustration of a tetramer section of PI polymer in the two represen-
tations considered. In the UA model, each monomer contains five particles. Atom indices are
included for reference to schemes described in (c) and the potential employed in SI. In the
CG model, beads are placed at the center-of-mass of each monomer. Successive CG position
vectors describe the polymer chain contour. (b) Conversion to RGB color is performed via
c(~r) = b(~r/l + 0.5) · 255c, normalizing each vector component (with its origin at the center
of a reference unit cell) and rescaling values to integers in [0, 255] (cutoffs at 0 and 255 are
applied). (c) Three types of monomer-based data representations used in machine learning:
Scheme 1 takes relative positions of five united atoms with respect to the monomer COM
(indicated by the red dot); Scheme 2 takes two orientation unit vectors of the reference plane
defined by the monomer COM, atoms 2 and 3; Scheme 3 takes four bond vectors among con-
nected pairs of atoms. The associated protocols of image translations are also illustrated. ~ri
and ~rc refer to the COM of the i-th monomer and the associated polymer chain, as shown
in (a).
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considered: Scheme 1 takes five position vectors from the monomer COM to the united

atoms; Scheme 2 treats the monomer as rigid body where the relative positions of atoms are

fixed and the rotation of the rigid body can be described by two unit orientation vectors;

Scheme 3 takes four bond vectors among pairs of atoms.

In Scheme 1, four position vectors are sufficient for determining particle coordinates inside

the monomer, given the position constraint of the COM. However, all the five vectors were

adopted to maximize the degrees of freedom for machine learning. For Scheme 2, a fixed unit

monomer is required to construct approximate configurations using rotations; we selected

one prescribed by the preferred bonds and angles from the force field (as shown in Figure 1c,

where all five particles lie in the same plane). From the set-up, there is no extra positional

constraint among five atoms in Scheme 1 besides the COM position. Scheme 2 constrains

both bonds and angles inside the monomer, and the same bond constraints can be applied

in Scheme 3 (i.e., bond lengths are fixed to 0.150, 0.134, 0.150, and 0.150 nm for 1-2, 2-3, 3-4,

and 2-5 bonds, respectively), which is the case in our UA simulations (constraining bonds

allows for a larger timestep in MD simulations). In general, these three schemes provide

different data representations of the UA configuration. Their effect on the training and

prediction of machine learning will be examined later.

To structure UA and CG data, spatial configurations were mapped into images. The

translation was executed by converting XYZ components of vectors to RGB values through

normalization with respect to adaptive reference cells and rescaling (Figure 1b). Each color

channel, corresponding to an axis, takes integer values from 0 to 255. The spatial resolution

of this mapping is thus dictated by l/255, with l the side length of the reference cells,

which is optimized for performance. Following the mapping schemes in Figure 1c, UA

images, carrying different features of individual monomers, were obtained from mapping

characteristic vectors (i.e., ~vi, ~ni, and ~bi) to pixels or color blocks. In particular, the relative

position vectors in Scheme 1 were normalized to a reference box of l = 0.46 nm centered at

the monomer COM (i.e., the CG bead location); the orientation and bond vectors in Schemes
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2 and 3 were treated as unit vectors. CG color blocks, containing positional information of

monomers, were designed to take the total size of the UA color blocks from the member

vectors, which composed “low-resolution” CG images.

For a case study, we selected a PI melt system consisting of 100 chains of 30 monomers

each (noted as 30-mer). MD simulations were performed at temperature T = 413 K and

pressures P = 1 bar to generate system configurations (using Gromacs,53,54 version 2019.3,

see simulation details and Figure S3 in SI). Typical chain conformations in UA and mapped

CG representations are shown in Figure 2a and 2b, respectively. Image translation was

performed per polymer chain. A reference cell of l = 7.5 nm was adopted at the chain COM

for the color mapping of CG beads (the average 30-mer end-to-end distance REE ≈ 3.28 nm,

see SI and Figure S4 for detailed discussion). Figure 2c presents three images translated

from the conformations via the mapping schemes in Figure 1c. Each image represents a

single training data, consisting of two concatenated 256× 256 pixel matrices of RGB values

from the UA and CG representations. The CG image is used as the input for machine

learning, while the UA image is the target. The particular data arrangements displayed in

those images were employed to maximize the use of information in training. The training

sets were constructed accordingly from an atomistic MD trajectory (each frame corresponds

to 100 images).

The implementation of Pix2Pix44 was carried out in the open source TensorFlow 2 plat-

form and a single NVIDIA GeForce GTX 1080 GPU was employed for calculations. The

efficiency of this machine learning mechanism in training was optimized and the adjustment

of relevant control parameters is presented in Figures S5-S10 in SI. As the machine learning

is based on images, the acquired parameter set should also exhibit good performance in other

systems with similar data representations. A typical training process using Scheme 3 map-

ping is shown in Figure 3a, which is characterized by the evolution of defined loss functions

along with the number of epochs. Specifically, generator loss contains cross entropy between

generated images (namely, predictions) and a matrix of the same shape with value ones, plus
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Figure 2: (a) A 30-mer PI (i.e., 150 united atoms) UA chain configuration. (b) The same
chain in the CG representation. (c) Corresponding images used in training for Schemes 1 to
3. Each image contains concatenated 256×256 pixel matrices of RGB values converted from
UA and CG configurations, respectively. Zero-padding is applied in the conversion (as black
margins) while the data body is centered. In Scheme 1, each position vector of a united
atom ~vi is depicted by a 256 × 1 unicolor stripe. In Scheme 2, each unit orientation vector
n̂i is depicted by a 256× 4 unicolor stripe. In Scheme 3, each unit bond vector b̂i is depicted
by a 256× 2 unicolor stripe. The color of the corresponding 256× 5, 256× 8, 256× 8 stripes
for each CG bead is converted from the relative position of the monomer COM with respect
to the chain COM. These data representations maximize the use of information in training.
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a weighted L1 difference between predictions and targets (the effect of weight coefficient was

tested, cf. Figure S10 in SI); discriminator loss contains cross entropy between predictions

and a matrix of zeros, plus cross entropy between targets and a matrix of ones.44 The de-

cay of total loss (i.e., sum of the generator and discriminator losses) as learning progresses

indicates that the training improves the quality of predicted images from the generator (cf.

Figure S8).

Figure 3: (a) The evolution of loss functions along with epochs in the training of Scheme 3.
Each epoch refers to a cycle through all the training data (and takes ∼ 21.2 s in real time).
(b) Comparison between a target image (i.e., ground truth) and predicted image from the
trained model after 400 epochs. (c) Polymer chain configurations translated from the images
in (b). The original chain configuration is shown for comparison. The marginal difference
between original and target is caused by the rounding error of float to integer conversion in
image translation. (d) Simulation cells of the UA model converted from target and predicted
images (polymer chains are unwrapped in the periodic simulation box and colored differently
for visualization).

Our machine learning approach was validated by testing configurations not included in

the training set as input. Figure 3b displays an example of a predicted image from the trained

model after 400 epochs, alongside the corresponding target image. Besides mild blurry near

the margins, the prediction in general exhibits an outstanding visual similarity with the
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target. The averaged RGB values, ~c, over individual color stripes are translated to bond

vectors (i.e., ~bi = ~ci/255−0.5). Taking the CG bead coordinates from the pairing CG image,

the atom coordinates with respect to the chain COM can thus be determined. Figure 3c

shows the chain conformations converted from images in Figure 3b, with the original chain

conformation also presented for comparison (the image translation results in a marginal

difference between the target and original conformations due to float to integer conversion).

One finds a good consistency between the prediction and the target or original. Meanwhile,

the deviation of the prediction from the original contour exposes the inherent feature of the

one-to-many correspondence from CG to UA configurations, as such a backmapping process

generates information and is not deterministic in solutions. With the information of chain

COM (recorded during the image translation), a UA configuration of the entire system can

be handily constructed from assembling chains in space (see Figure 3d).

Obtaining the trained models, the backmapping from CG to UA proceeds in three steps:

convert a CG configuration to CG images following the image translation protocols used in

the training set, input the images into machine learning for a prediction, and translate the

predicted images to a UA configuration. The CG configuration can be mapped from atomistic

trajectories or taken directly from CG simulations with no original atomistic counterpart.

Due to adaptive reference, the predictions are made simultaneously for all monomers in

the image (i.e., 30 under the current setting as a typical choice). This offers a significant

improvement over sequential building in efficiency. Also, as the data arrangement in image

translation is flexible, the trained models can directly apply to other PI melt systems of

different size or chain length. Specifically, shorter chains can be treated by extra zero-

padding in the input CG images; longer chains can be processed on the basis of a 30-mer

or shorter fragments. We note that although the random mapping method (introducing

repeat units based on the COM location and random orientation) inherently has the same

feature (i.e., not limited to systems), it requires a system-specific tuning in practice, and

fails to capture intra-chain correlations, in contrast to the machine learning approach. As
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an example, we present a CG chain conformation of a 500-mer chain alongside a prediction

from random mapping in Figure 4a. For comparison, backmapped UA configurations from

machine learning are shown in Figure 4b using different data representation schemes.

To quantify the prediction quality, we examined the distributions of all five types of bonds,

five types of angles, and four types of dihedrals along the chain contour, and computed

the probability densities (pi, i indicates individual distribution) for original, target, and

prediction UA configurations, respectively (cf. Figures S7 and S11-S13 in SI, where radial

distribution functions were also shown). A comparison between original and predicted UA

configurations for a dihedral distribution, illustrating a typical intra-chain correlation, is

summarized in Figure 4c. Random mapping does not carry any correlation among particles

in different monomers. By contrast, certain degrees of correlations were captured through

machine learning on the chain connectivity depicted by the color block sequence inside the

images. As no constraint was applied for the connection between neighboring monomers,

machine learning yielded a spread distribution of bond length for the connecting bonds

and smeared distributions of the associated dihedral angles. These variations enlarged the

configurational space of predictions for backmapping.

We defined a metric, Ψ =
∑

i

∫
|ppredictioni (x) − poriginali (x)|dx, as the sum over L1 norm

of the difference between pi of prediction and original for all the distributions (see Figure

S14 for the comparison of different dihedral distributions). Lower values of Ψ correspond

to higher prediction quality. In Figure 4d, we plot Ψ of backmapped configurations from

random mapping and machine learning for systems of different chain lengths and numbers.

Specifically, the backmapping from different schemes was performed using the same trained

models based on 30-mer UA configurations. From the figure, one finds that all the schemes

exhibit similar performance for different melt systems, demonstrating the transferability and

efficiency of the machine learning approach using chain/fragment-based adaptive reference

strategy. Furthermore, machine learning shows much improved backmapping credibility in

comparison to the random mapping. Scheme 3 provides the best predictions compared to
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Figure 4: (a) A typical 500-mer CG conformation and backmapped UA configuration from
random mapping. (b) Counterpart predictions from machine learning through different
data representation schemes. (c) Distributions of dihedral angles defined by UA particles
(3,4,6,7) along the chain contour (cf. Figure 1a for indexes) from original and predicted
500-mer UA configurations. (d) Metric Ψ of constructed UA configurations for systems
containing 100 30-mer, 125 150-mer, 135 300-mer, and 200 500-mer chains, respectively,
using trained models based on a 30-mer dataset. (e) Comparison of radial distribution
function of UA particles between the 500-mer original and obtained configurations after an
energy minimization procedure on the predictions to remove steric overlapping (via a steepest
descent algorithm with the maximum force tolerance of 10000 kJ/mol · nm and initial step
size of 0.01 nm, which converged in a couple hundred of steps). (f) Temporal evolution of
total energy in a subsequent MD simulation (in NVT ensemble) for the prepared 500-mer
UA systems. The dotted line indicates the converged value from a long MD simulation of
the UA system.
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Schemes 2 and 1, implying that data representation can influence the results of training.

Comparatively, reasonable constraints in data representation simplify the statistical rela-

tionships that leads to better results.

To further validate the backmapping, we initiated atomistic MD simulations with pre-

dicted configurations and compared the trajectories with long UA simulations that present

converged metrics of properties. As the adopted chain-based strategy does not fully take

into account the local environment of chains, neighboring steric overlapping from different

chains cannot be resolved. The resulting stiffness of interaction potentials can be relaxed

via energy minimization, as is standard in backmapping methods.15,24–30,34 In Figure 4e, we

present the radial distribution function of UA particles in 500-mer configurations obtained

after an energy minimization procedure on the predictions (see Figure S15 for the inter-chain

result). Particularly, the input CG configuration for backmapping was selected from a CG

MD trajectory (rather than being mapped forwardly from a UA configuration). Figure 4f

plots the temporal evolution of the system’s total energy in subsequent MD simulations (in

NVT ensemble with initial velocities generated based on a Maxwell distribution). The en-

ergy evolution proceeds to an equilibrium value rapidly (in ∼ 60 ps, which is close to the

segmental relaxation time of PI at T = 413 K15,49). Upon reaching the equilibrium value,

conformational properties recovered the original ones (see Figure S16 for example). The

quick convergence indicates that the predicted configurations from the trained models are

close to the target one in the free energy landscape, as also implied by Figure 4e. In con-

trast, random mapping requires longer time to reach equilibrium, which can be attributed

to kinetic trappings induced by steric constraints. From the comparison, we conclude that

machine learning presents a significant improvement in capturing intra-chain correlations

that provides faithful backmapping of long macromolecules in dense systems.

In summary, we have proposed an image-based approach for structural backmapping

from coarse-grained to atomistic configurations. We note that the image mapping offers a

straightforward and efficient representation to structure data of particle coordinates. Com-
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bined with machine learning tools, such as conditional generative adversarial networks, it

provides an effective and reliable strategy for high throughput and high accuracy conversion.

We demonstrated the success of the approach with a case study on cis-1,4 polyisoprene melt

simulations using adaptive reference, which fully exhibits the generality and transferability

of the strategy. Our approach separates configurational information from molecular topol-

ogy and force field for backmapping, and makes predictions only based on relative positions

and hidden correlations. This underlying mechanism can be easily implemented and applied

to other complex systems at different coarse-graining levels, such as heteropolymers and

biomacromolecules, where bookkeeping and tuning atomistic details via human interven-

tion becomes particularly tedious and labor-intensive. Specifically, the mapping scheme and

data representation can be modified to depict different molecular architectures and chem-

ical species through the variation in color range, color block size and spatial arrangement;

while the optimized control parameters of the machine-learning mechanism should be gener-

ally applicable. We expect that this backmapping approach further complements multiscale

modeling techniques addressing material properties over a broad range of length and time

scales.

Supplementary Material

See the supplementary material for the development of coarse-grained force field, simulation

details, benchmark of parameters for machine learning, and additional results.

Acknowledgement

This work was supported by the Foundation of Research and Technology - Hellas and the

Goodyear Tire and Rubber Company. W.L. acknowledges Yunhe Feng for helpful discus-

sions.

16    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
12

32
0



Data Availability Statement

The data that support the findings of this study are available from the corresponding author

upon reasonable request.

References

(1) Weinan, E. Principles of multiscale modeling ; Cambridge University Press, 2011.

(2) Horstemeyer, M. F. Practical aspects of computational chemistry ; Springer, 2009; pp

87–135.

(3) Ayton, G. S.; Noid, W. G.; Voth, G. A. Multiscale modeling of biomolecular systems:

in serial and in parallel. Curr. Opin. Struct. Biol. 2007, 17, 192–198.

(4) Murtola, T.; Bunker, A.; Vattulainen, I.; Deserno, M.; Karttunen, M. Multiscale model-

ing of emergent materials: biological and soft matter. Phys. Chem. Chem. Phys. 2009,

11, 1869–1892.

(5) Brini, E.; Algaer, E. A.; Ganguly, P.; Li, C.; Rodriguez-Ropero, F.; van der Vegt, N. F.

Systematic coarse-graining methods for soft matter simulations–a review. Soft Matter

2013, 9, 2108–2119.

(6) Izvekov, S.; Voth, G. A. A multiscale coarse-graining method for biomolecular systems.

J. Phys. Chem. B 2005, 109, 2469–2473.

(7) Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Krishna, V.; Izvekov, S.; Voth, G. A.; Das, A.;

Andersen, H. C. The multiscale coarse-graining method. I. A rigorous bridge between

atomistic and coarse-grained models. J. Chem. Phys. 2008, 128, 244114.

(8) Noid, W. G.; Liu, P.; Wang, Y.; Chu, J.-W.; Ayton, G. S.; Izvekov, S.; Andersen, H. C.;

Voth, G. A. The multiscale coarse-graining method. II. Numerical implementation for

coarse-grained molecular models. J. Chem. Phys. 2008, 128, 244115.

17    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
12

32
0



(9) Pandey, Y. N.; Papakonstantopoulos, G. J.; Doxastakis, M. Polymer/Nanoparticle In-

teractions: Bridging the Gap. Macromolecules 2013, 46, 5097–5106.

(10) Baschnagel, J.; Binder, K.; Doruker, P.; Gusev, A. A.; Hahn, O.; Kremer, K.; Mat-

tice, W. L.; Müller-Plathe, F.; Murat, M.; Paul, W., et al. Viscoelasticity, atomistic

models, statistical chemistry ; Springer, 2000; pp 41–156.
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