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Bottom-up coarse-graining of polymers is commonly performed by matching struc-

tural order parameters such as distribution of bond lengths, bending and dihedral

angles and pair distribution functions. In this study, we introduce the distribution of

nearest-neighbors as an additional order parameter in the concept of local density po-

tentials. We describe how the inverse-Monte Carlo method provides a framework for

forcefield development that is capable of overcoming challenges associated with the

parametrization of interaction terms in polymer systems. The technique is applied

on polyisoprene melts as a prototype system. We demonstrate that while different

forcefields can be developed that perform equally in terms of matching target dis-

tributions, the inclusion of nearest-neighbors provides a facile route to match both

thermodynamic and conformational properties. We find that several temperature

state points can also be addressed provided that the forcefield is refined accordingly.

Finally, we examine both the single-particle as well as the collective dynamics of the

coarse-grain models, demonstrating that all forcefields present a similar acceleration

relative to the atomistic systems.
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I. INTRODUCTION

Molecular modeling of polymers relies on efficient lattice or continuum representations

to capture material properties over the large length-scale and long time-scales of interest.1

Methods to build coarse-grained (CG) models representative of chemically-specific systems

(including polymer melts) have improved over the last two decades.2–8 Bottom-up CG poly-

mer models are often assembled by utilizing detailed atomistic trajectories of oligomer chains

that exhibit short relaxation times in contrast to commercial grade macromolecules. In

structure based coarse-graining methods, such as iterative Boltzmann inversion (IBI) and

Inverse Monte Carlo (IMC), construction of the pair-wise model aims for matching the

structure proposed by a higher resolution model (often atomistic) by tuning the interac-

tion potential.9–11 Forcefield development proceeds by an iterative refinement of the CG

interaction terms guided by deviations from the target pair distribution function, sam-

pled bond lengths, bending and dihedral angles. Due to coupling of separate potential

terms, several optimization cycles are commonly performed in sequence11 with hope that a

pair-wise tabulated CG forcefield that lacks cross terms, e.g. bond-angle, will adequately

describe chemically-specific polymeric systems. Polyisoprene (PI) is just one of many ex-

amples where such CG models have been successfully employed to study the melt or hybrid

systems with solid surfaces.3,11–15 Note that coarse-grain modeling that focuses on capturing

structural details of the atomistic systems can serve as an intermediate step towards creation

of well-equilibrated initial structures of macromolecular systems by re-introducing atomistic

details. Studying local dynamics or structure in atomistic detail is limited by the long chain

relaxation times of polymers and back-mapping procedures can address these challenges by

transitioning between models at different resolutions.15–18

Apart from structure, it is highly desirable that the CG model captures thermodynamic

properties, enabling studies under constant pressure. Deviations in the pressure of the

CG models developed with IBI are often addressed by the addition of a linear attractive

tail to the pair non-bonded interactions.2,11 Pressure matching via this process requires

readjustment of the remaining potential terms because of their coupled contribution in

matching the desired structure as proposed by the atomistic model.3,11–15,19 Thermodynamic

consistency is not a challenge exclusive to IBI;8,20,21 IMC or force-matching procedures often

require the addition of constraints to match the thermodynamic state of the input model.22–24
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Matching volume (V ) fluctuations as expressed by the isothermal compressibility κT =

(〈V 2〉 − 〈V 〉2)/(kBT 〈V 〉) is even more demanding. This has been shown in several studies,

i.e. on water19, polybutadiene25 and polystyrene,16 where a choice between matching either

pressure or compressibility is presented.19 It is important to emphasize that thermodynamic

consistency improves with higher resolution CG models26,27 where fewer degrees of freedom

are eliminated. This was recently shown for PI with a 2-bead per monomer CG model28 that

is closer to the soft degrees of freedom represented by dihedral angles along the PI chain (3

per monomer).29,30 However, such models offer moderate computational benefit relative to

united atom models (5 interaction sites per monomer) and require the development of more

complex forcefields given the increased number of particle types (and consequently distinct

interaction terms) in the chosen CG representation.

Beyond modifying pair-potentials or increasing resolution, a different proposition is to

supplement the forcefield with a volume-dependent term determined by the pressure profile

of the mapped atomistic trajectory.26 The posterior addition of extra potential terms to a CG

forcefield requires further refinement due to the expected coupling between each term.6,31,32

A different approach based on the integral equation coarse-graining (IECG) method, treats

the density as an intrinsic property and active variable of the CG model.8 In IECG the

effective CG interactions are developed analytically using the Ornstein-Zernike equation of

the liquid state theory.

A distinct path that motivated this study concerns the development of local density po-

tentials to supplement pair interactions with terms that are multi-body by design. While

the application of multi-body potentials has been common practice for many decades (for

example in simulations with the embedded atom method33,34 or in simulations using dis-

sipative particle dynamics35,36), the introduction of such interactions has found renewed

interest in terms of constructing bottom-up chemically-specific CG models.37–47 In the field

of molecular liquids, multi-body potentials can serve to improve predictions on structure

and thermodynamics. CG models are often described by a single bead and the potentials

include a term that depends on the local density. Techniques developed for optimization of

solely pair potentials can be extended with the incorporation of multi-body terms to improve

target properties. In one such recent study, Moore et al. optimized multi-body interactions

by matching the pressure in simulations of hexahydro-1,3,5-trinitro-s-triazine with pair in-

teractions developed by the force-matching method.42 In another study, Rosenberg used the
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relative-entropy optimization supplemented with local density potentials;47 in this scheme

the pair and density potentials where simultaneously optimized by calculating the relative

entropy at each iteration using short trial simulations in the NV T ensemble. Results where

compared to CG models with solely pair interactions developed with the Inverse Monte Carlo

method. In the field of polymers, Sanyal and Shell used the relative entropy framework to

parametrize local density potentials for a bead-spring model in an implicit solvent.41 The

optimization performed in the NV T ensemble targeted the development of the non-bonded

interactions while the bond and angle potentials where retained from the explicit water

model. A different study by Agrawal et al. introduced a density-dependent potential term

using the embedded-atom method to model semi-crystalline polyethylene.48 CG bond and

bending angle potentials where developed with the IBI method while the parameters of the

embedding energy function were calibrated using least squares minimization to match the

macroscopic pressure of the system at different state points.

Finally, we should also briefly mention that many-body CG potentials have also been

developed rigorously based on cluster expansion techniques.49 It was found that the clus-

ter expansion formalism can provide accurate effective pair and three-body CG potentials,

mainly at high temperatures and low densities. Such a methodology is computationally

efficient since the hierarchy of the effective non-bonded CG potentials terms is developed by

the conditional sampling of a few CG particles, and no information from long n-body (bulk)

simulations is required. However, for dense liquid systems, as the bulk polymer studied here,

this method is not directly applicable since numerical estimation of higher than three-body

order terms is required.

In this study we develop a methodology to introduce details of the (many-body) local

environment in a bottom-up coarse-graining approach applied to an atomistic model of

cis-1,4 PI. As described previously, PI has been studied extensively with IBI and a recent

report highlighted the challenges in capturing structure, density and compressibility.28 We

implement the Inverse Monte Carlo method, which to the best of our knowledge has not

been applied previously on polyisoprene melts and we supplement the forcefields with a

local density term. In our study, all potential terms are developed simultaneously while

targeting specific order parameters and their covariance is accounted for in the optimization

process. Section II presents the methodology together with a systematic evaluation of the

first “solvation” shell and the validity of an isotropic approximation of the arrangement
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of nearest neighbors. Given the limited applications of IMC in polymer systems, we also

provide a short description of the method in Section II C. Section III presents our findings

on the optimization process with three different forcefields (one solely with pair interactions

and two that include local density terms). We examine the ability of different approaches

to capture the local and global structure and evaluate the performance of the CG forcefields

with regards to the dynamics of PI oligomers. We finish with a brief discussion of our

findings and opportunities that our study reveals.

II. METHODS

A. Atomistic simulations

We performed atomistic simulations with a united atom (UA) model for cis-1,4 PI that

captures the polymer properties quantitatively as shown in past studies.28,30,50–53 Molecular

dynamics simulations were executed for a system of 100 chains with N=30 repeat units

(MW=2043 gr/mol) using the GROMACS 2018.3 software.54 We employed a leap-frog al-

gorithm with a 2 fs time-step and a cutoff of 1.2 nm for van der Waals interactions. The

model does not include any partial charges so electrostatic interactions were not considered.

Simulations were conducted in the NPT ensemble with the Parrinello-Rahman pressure

coupling55,56 and Nosé-Hoover thermostat57,58 with a 0.5 and 2 fs time-step respectively.

Properties were calculated over 100 ns, 250 ns and 400 ns at 413 K, 353 K and 298 K and

1 bar following an equilibration period of 120 ns, 200 ns and 1.3 µs respectively. While the

average chain relaxation time (slowest mode) at 298 K is estimated as 5.6 µs, the calculated

properties show small fluctuations after the equilibration period of 1.3 µs. The model pre-

dicts a density of ρ ≈ 0.894 g/m3 and an isothermal compressibility of κT ≈8.7×10−5 bar−1

at 298 K. Experimental data values for high molecular weight PI at room temperature are

0.9 kg/m359 and κT ≈5-5.3×10−5 bar−160,61, which are in very good agreement with our data

given the lower molecular weight of our model51 and the presence of isomers in experimental

samples.
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B. Coarse-grain models

A critical parameter in CG modeling is the choice of CG mapping. Different schemes

have been employed for CG models of PI with the most common placing a single bead per

repeat unit at the center of the bond between two consecutive monomers.11,14,15 We found

that this mapping leaves chain ends with a very anisotropic environment and introduces

additional challenges to the coarse-graining procedure adopted in this work. To simplify the

application of the multi-body terms that depend on local densities, we represent each repeat

unit with a single CG bead centered on the monomer center of mass.62

There are three CG models developed in this study, CG-pair, CG-CN and CG-NN. A

summary of these models together with a brief description of their differences is provided in

Table I.

Model Nearest-Neighbor potential Ensemble

CG-pair None NV T

CG-CN Attractive NPT

CG-NN Full NPT

TABLE I. Nomenclature for the developed CG models.

The CG-pair model contains bonded interactions and only pair-wise non-bonded interac-

tions. The effective interactions are optimized to match specific distributions. We calculated

the distributions of bond lengths (Sb), bending angles (Sa), dihedral angles (Sd) and dis-

tances between non-bonded pairs (Snb, calculated for intra- and inter-molecular neighbors

that are separated by more than three CG bonds) as described further in Section II C. At

each temperature, the discretized distributions were extracted from the mapped trajectory

and concatenated to the vector Starget used as the target for coarse-graining. Furthermore,

to account for the many-body interactions beyond the pair-wise assumption, we derived two

forcefields (CG-NN and CG-CN) by employing an additional multi-body potential (UNN(n)),

where n is the number of nearest-neighbors (NN). The optimization of these forcefields with

IMC required the introduction of the distribution of n (SNN) to the set of target distri-

butions. It has been reported that pair potentials often fail to quantitatively capture the

short-range effective interactions from neighbors in the first coordination shell (first mini-

mum of radial distribution function g(r)) and corrections via multi-body contributions are
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necessary to capture the local density as well as density fluctuations.24,39 A computationally

inexpensive way to calculate the number of nearest-neighbors (n) of a bead on-the-fly is

through a continuous isotropic indicator function (Θ(r)) that reduces to zero at a fixed cut-

off. A common choice for Θ(r) is the Lucy function.42,63–65 Sanyal et al.41,46,47 optimized the

cut-off radius as a system parameter using the relative entropy coarse-graining framework.

Faure derived the local density using Voronoi tessellation.40,66–68 Here, we explore the use of

the solid-angle nearest-neighbor (SANN) algorithm developed by Meel et al.69 to extract n.

The SANN algorithm defines n neighbors on a particle i based on the separation between

i and all remaining particles as well as their individual contributions towards a total solid

angle 4π which leads to the following condition for the maximum neighbor radius Rn
i

Rn
i =

∑n
j=1 ri,j

n− 2
< ri,n+1

69 (1)

The resulting distribution of n is shown in Fig. 1a at three different temperatures. Note

that the distribution of nearest-neighbors defined by SANN presents minimal changes over

a broad range of temperatures. The increase of the density at lower temperatures translates

to a lower volume occupied by the first neighbors (defined by Rn
i ). An illustration of nearest

neighbors is shown in Figure 1b. We observed that chain ends exhibit a slightly increased

n (positioned at longer distances) due to their increased free volume.51 While in principle

this could translate to a need for a separate density potential this effect is minimized when

introducing a uniform indicator function (described below) since for a fixed range similar

distributions were observed irrespective of the position of the CG bead along the chain.

The SANN analysis provides a systematic method to define the indicator function from

the contribution of nearest-neighbors to the local density surrounding the CG bead and al-

lowed us to quantitatively assess the accuracy of the isotropic approximation of local density.

The indicator function Θ is defined as the fraction of the total pair distribution function

from the nearest-neighbors Θ(r) = gNN(r)/gtot(r) and extrapolated to 1 for short separations

before the first peak (Fig. 1c, ≈ 0.27 nm). The resulting indicator function calculated at

three temperatures are depicted in Fig. 1d. It is evident that the aforementioned definition

of a “local volume” decreases with temperature as the size of the first coordination shell

becomes progressively smaller. The number of nearest-neighbors (n) around a particle i can

be calculated using Θ(r) as

7
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FIG. 1. a) Distribution of number of nearest-neighbors (n) extracted with SANN69 (symbols) and

by the use of indicator functions (lines) at 298 K (blue), 353 K (green) and 413 K (red). b) Nearest-

neighbors (blue) of a CG bead (red) as extracted from SANN analysis on a mapped atomistic

configuration. The dashed red lines represent a circle centered on the examined bead. c) Total

pair-distribution function g(r) and contribution from nearest-neighbors (gNN(r)) as determined

by SANN at 413 K. The dashed line depicts the extracted indicator function Θ(r). d) Indicator

functions extracted at different temperatures.

ni =
N∑
j 6=i

Θ(rij) (2)

Note that for consistency with pair-distribution functions in defining local density, the

center atom does not contribute to the calculation of n.70 Intra-molecular neighbors that

participate in bond stretching, angle bending and torsional potentials were included in the

list of potential neighbors which underlines a complexity present when working with poly-

mers, i.e. the unavoidable direct or indirect correlation between the calculated distributions

of the corresponding order parameters. Comparing the direct results of SANN and the
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analysis performed using an isotropic Θ(r), we observe that deviations between the two

calculations increase as temperature decreases. The isotropic assumption depends on the

mapping scheme employed as well as the specific system and conditions studied. SANN

was introduced originally as a rapid algorithm to perform NN calculations on-the-fly as an

alternative to simulations with Voronoi tessellation of space which are computationally de-

manding. Although we opted for the simpler Θ(r) route for calculating n in this study, we

note that SANN could be explored for on-the-fly calculations in Monte Carlo simulations,

particularly at lower temperatures where the application of the spherical approximation

presents significant deviations. Using n calculated from Eq. 2, forcefields for the CG model

were assembled in tabulated forms and the potential of the CG-CN and CG-NN models

assumed the general form of

Utotal = Ubond(l) + Uangle(θ) + Udihedral(φ) + Unonbond(r) + UNN(n) (3)

where Ubond, Uangle and Udihedral are the bonded potentials that depend on bond length

(l), angle (θ) and dihedral (φ) of consecutive beads along the chain. Unonbond is the pair

interaction between non-bonded beads and is a function of their separation (r). UNN depends

on the number of nearest-neighbors surrounding the bead (n) which includes both bonded

and non-bonded neighbors. The force on a particle i from a surrounding neighbor j can be

calculated as42,71,72

fi,j = −
[
dUNN
dn

(ni) +
dUNN
dn

(nj)

]
dΘ(rij)

dr

ri − rj
rij

(4)

The above equation underlines the advantage of choosing an indicator function that varies

continuously with r. As described in the next section, we derived three different forcefields

in this study, one with only pair-wise interactions and two with local density potentials .

C. Inverse Monte Carlo

We constructed the CG force fields using the inverse Monte Carlo (IMC) method (also

known as the inverse Newton method).73,74 IMC provides a numerical framework to derive

a set of potentials that reproduce the target distribution vector (Starget) derived from the

atomistic model. The tabulated potentials (as constant grids) are updated at each iteration

9
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of the IMC procedure. The potential at each bin, Eα, contributes to the bonded, non-

bonded or NN energy with the corresponding occurrence Sα. The total potential energy of

the system is calculated by

Utotal =
∑
α

SαEα (5)

The initial estimate for potentials at 413 K was derived from the Boltzmann inversion

of target distributions,11 e.g, E0
nb(r) = −kBT ln gnb(r) where gnb(r) = Snb(r)/(4πr2N).

Likewise, we estimated the nearest-neighbor potential from the distribution SNN(n) as

E0
NN(n) = −kBT lnSNN(n) (see Figure 1a). We initiated the optimization at lower tem-

peratures using potentials from the immediate higher temperature as the initial guess. The

deviation of the distribution vector from the target ∆〈S〉 = 〈Sobs〉 − 〈Starget〉 was sampled

at each iteration and the potential was updated by ∆E after solving the inverse problem:

∆〈Sα〉 =
∑
β

∂〈Sα〉
∂Eβ

∆Eβ +O(∆E2) (6)

Note again that the vector S is a concatenated vector with populations sampled for each

bin of the tabular potentials (including bonded, angular, dihedral, pair and NN terms) and

the vector ∆E consists of an update to all tabulated terms. The Jacobian matrix (A)

employed in the equation above is calculated using the relationship73,74

Aαβ =
∂〈Sα〉
∂Eβ

= −〈SαSβ〉 − 〈Sα〉〈Sβ〉
kBT

(7)

The linear problem in Eq. 6 is ill-defined as can be further shown by singular value

decomposition23,75, e.g., the distribution of sampled bond lengths depend on differences

in the bonded potential and not the value at the minimum. Therefore we minimized the

following objective function instead23

objective function = ||A∆E−∆S||2 + γ||∆E||2 (8)

that includes a regularization term to penalize large changes in potentials (expressed

as the Euclidean norm of the vector ∆E) and reduce the impact of statistical noise. We

employed the Sequential Quadratic Programming algorithm as implemented in standard

Python distributions. The regularization parameter γ controls the stability of the scheme at

the expense of sensitivity; we decreased γ as S approaches the target up to the point where
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the method becomes unstable given the presence of statistical noise in our data; for our

particular system and target vector we employed λ values in the range of 20 to 0.3. At each

iteration the minimum of the bonded potentials was shifted to zero while for the non-bond

potentials the value at Rcut = 1.5 nm was constrained to zero. The bonded and non-bond

tables consisted of 100 − 150 bins each and the NN potential had about 15; we found that

the choice of grid affects the sensitivity of the optimization scheme as well as the strength

of the relative contribution of each distribution to ∆S.

Several past studies restricted multibody non-bonded potentials to solely providing co-

hesive energy to the system.41,76 Within the scheme proposed herein, we introduced an

additional constraint in the minimization that ∆E should result to a monotonic NN poten-

tial decreasing as n increases. Effectively all repulsion in this new set of interactions (termed

CG-CN model) will be provided by pair interactions testing directly whether such a simpler

model provides an equally satisfactory description of the system under study.

The IMC procedure was performed employing our in-house Monte Carlo algorithms15,77

and included the execution of single particle displacements (89.95%) and reptate moves

performed in a configurational-bias scheme.78 Simulations for the model without NN inter-

actions (CG-pair) were performed in the NV T ensemble to match the density of the UA

model. The local density models were simulated in the NPT ensemble at 1 bar by includ-

ing 0.05% attempts for volume changes. As documented in the literature, IMC requires

exhaustive sampling of both distributions and correlations for the scheme to converge to a

satisfactory solution.23,79,80 The distributions herein were calculated over at least 400 million

MC iterations (after an equilibration period of 20,000 iterations) to reduce the statistical

noise with more iterations performed at lower values of λ. A technical but important detail

of the scheme is that the sampling for the Jacobian matrix (Eq. 7) was performed on-the-fly

every 2,000 steps.

D. CG Molecular dynamics

Molecular dynamics simulations of CG models were performed by a custom in-house par-

allel MD code, using the CG potentials derived from the IMC procedure to study dynamics.

The (additional) computational cost of including many-body terms, based on the distribu-

tion of nearest-neighbors, is about 2-3 times that of a typical simulation with a pair potential.
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This is mainly due to the extra neighbor lists which must be separately constructed for the

calculation of local density for each atom; the latter has a computational complexity similar

to the calculation of a pair potential. The computation of the actual force requires nearly as

much time as the forces of a pair potential. Finally, some extra communications are needed

for the exchange of the local densities across MPI ranks.

Simulations of the CG-NN and CG-CN models were performed in the NPT ensemble at

1 bar and different temperatures. The Parrinello-Rahman barostat55,56 and the Nosé-Hoover

thermostat57,58 were used to maintain constant pressure and temperature. Simulations of

the CG-pair model were performed in the NV T ensemble to maintain the density obtained

from the corresponding UA simulations. The time step was 1 fs. The NV T runs where 10

ns long and the NPT runs 4 ns.

III. RESULTS

In the following sections we present our findings on the structure, conformational proper-

ties, thermodynamic properties and dynamics of the CG models compared to the underlying

UA model as well as the performance of the method employed. We derived three models:

(a) The first, “CG-pair”, assumes solely pair-wise interactions between particles that do not

interact via bond, angle or dihedral potentials. The other two CG potentials include the

multi-body potential acting on particles due to the number of NN in their local environ-

ment; (b) the “CG-NN” includes both attractive and repulsive multi-body terms, whereas

(c) the “CG-CN” includes only attractive terms due to the constraint implemented during

the forcefield development process.

A. Optimization

A clear advantage of the IMC procedure is the simultaneous refinement of separate in-

teraction potentials based on distributions accounting to an extent for their coupled effect

on the sampled distributions. It is therefore instructive to consider the performance of our

scheme. Fig. 2a presents the norm of the deviation vector from the target distribution for

the CG-CN forcefield at 413 K as a function of IMC iterations. Within 5 iterations, the

initial ||∆S||2 decreases by an order of magnitude while subsequent optimization is slower
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as the distribution vector approaches the target. The convergence route of individual terms

depends on the choice of distribution grid (which determines the weight in S) and the choice

of the initial estimate. The initial potential results in high deviations in the non-bonded

pair distribution which is the main contributor to the objective function. The inversion of

the pair distribution function results in a repulsive potential (Fig. 2b, iteration 0) with little

cohesion. Such an estimate could jeopardize the stability of CG NPT simulations during

forcefield development. In our scheme, the inverted nearest-neighbor potential (Fig. 2c for

the CG-CN model) provides the necessary attraction preventing the sampling of configura-

tions with reduced local density. As the optimization progresses, the pair potential develops

a first minimum to match the distribution of pairs (Iteration 10). The density of the CG-

CN model is rapidly converging to the targeted value at a faster pace than the matching of

intramolecular distributions.

The initial intra-molecular potentials provide a reasonable estimate with small deviations.

Therefore, the bonded terms undergo significant improvement only at later stages of the

algorithm when sensitivity is increased by lowering the γ parameter. We reduced γ every 5

iterations to increase the allowed size of the update ∆E in the forcefield at each step. After

10 iterations the non-bond distribution resembles the target and the algorithm switches

focus towards capturing intramolecular distributions; remarkably this coincides with the

algorithm attempting to match the tails of the nearest-neighbor distribution (see Iteration 10

and Iteration 22 in Fig. 2c) with a parallel rendering of the pair-potential at short distances

positive and a second clear minima over the second “solvation shell”. Such observations

highlight that if the fidelity in matching distributions is overlooked very different forcefields

could be derived. We also emphasize (and will demonstrate further) that intramolecular

neighbors and their placement is coupled to capturing the local density accurately.

The iterative minimization is limited by a system-dependent minimum value of γ as

further reduction results in instability. We found that this limit is coupled to the quality of

distributions and cross-correlation terms; noise in the Jacobian is detrimental to the method

therefore we opted to sample the distributions on-the-fly circumventing challenges limitations

imposed by storage of large trajectories. All three approaches (CG-pair in NV T , CG-NN

and CG-CN) converged to forcefields that were capable to capture the target distributions

satisfactory with small deviations from the target distributions. The potentials at 413 K

provided a good initial estimate for rapid convergence at 353 K however at 298 K the
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slow structural evolution made the optimization process challenging even while the needed

changes from the potentials refined at 353 K were minimal.
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FIG. 2. a) Convergence of distributions to target values during the IMC process (inset shows

the convergence of density to the UA value at 1 bar) and optimization of the b) pair non-bonded

potentials and c) nearest-neighbor potentials at 413 K for the CG-CN in the NPT ensemble.

B. Forcefields

The forcefields of the three CG models optimized at 353 K are presented in Fig. 3 to

demonstrate their significant differences. The CG-pair model is able to capture the target
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distributions quantitatively. However it lacks necessary cohesion and is incapable of cap-

turing the correct pressure in the NV T ensemble (and accordingly the correct density of

the melt in an NPT simulation). In contrast both CG-NN and CG-CN PI models include

attractive non-bonded interactions with the latter limited to solely monotonic local den-

sity potentials as often considered in coarse-grain models with multi-body terms.31,41,46,81

Note that constraining the local density potentials to cohesive forces results in a increased

pair-potential within the range of the chosen indicator function (Fig. 3e,1d). Similarly, the

repulsion provided by the local density potential in CG-NN at higher values of n (Fig. 3e) is

counteracted by a more attractive pair potential in the range of the chosen indicator func-

tion (Figs 3e,1d) to match Snb in the first coordination shell. The above findings further

underline: a) the strong coupling between pair non-bonded potential and local density po-

tentials and b) the significance of the choice of “local volume” (or range of the multi-body

term) in such forcefields. Clearly the shape of the indicator function holds also a prominent

role in guiding the potentials extracted; herein we followed a systematic approach based

on the contribution of the first-neighbor shell to the total density profile. It is important

to emphasize the unique challenges present in bottom-up coarse-graining of polymers by

direct contributions from proximal intramolecular neighbors along the chain to the local

density profile of a segment. This is evident by differences in the bond, angle and dihedral

potentials extracted as shown in Fig. 3 at 353 K with similar results at all temperatures

studied. While all three models are capable of capturing quantitatively the corresponding

distributions significant variations can be observed by examining individual terms between

the forcefields.

All CG forcefields (CG pair, CG-NN and CG-CN ) were able to reproduce the respec-

tive target distributions at different temperatures with minimal deviations; however none

was found to be temperature transferable. A refinement was introduced as described pre-

viously with additional optimizations performed to quantitatively capture the distributions

at a different state point. Several strategies could be explored to optimize the potentials

on multiple state-points and improve transferability.43,82,83 However in our method two ad-

ditional features need to be considered: a) the definition of “local volume” changes across

temperatures and correspondingly the employed indicator function and b) the assumption

of a spherical local volume at low temperatures needs to be examined. Fig. 1c presents

a systematic approach to extract the temperature dependence of the local volume; using
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FIG. 3. a) Bond-stretching, b) Angle-bending, c) Dihedral, d) Pair non-bonded and e) Nearest-

neighbor potentials for CG-CN (−), CG-NN (- -) and CG-pair (· - ·) at 353 K.

these data the extracted non-bonded potentials after refinement are presented in Fig. 4.

It is evident that after accounting for the decrease of the local volume (together with re-

markably similar distributions of first neighbors, Fig. 1a) the non-bonded potentials derived

independently at different temperatures are similar but not identical as expected. While

a temperature-transferable CG model would be highly desirable we note that the reduced

resolution offered by the model (together with the lost entropy of the eliminated degrees

of freedom) does come at a cost; as shown in Fig. 1a, the spherical approximation of the

local volume becomes progressively less accurate therefore additional constraints to capture

multiple-state points with a single forcefield could result to reduced quality in matching the

target distributions at individual temperatures.
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FIG. 4. a) Pair non-bonded and b) nearest-neighbor potentials for CG-NN (−) and CG-CN (- -)

at 298 K (blue), 353 K (green) and 413 K (red).

C. Conformational and thermodynamic properties

We first evaluated the ability of the forcefields to drive CG simulations that exhibit dis-

tributions matching those calculated with the atomistic model. In all cases the method

converged to forcefields that were able to reproduce the target distributions with minimal

deviations. To demonstrate the successful implementation we present in Fig. 5 the distribu-

tions using all three models at 298 K compared to the UA target. Note that this is the state

point where the largest deviations persisted; in all other cases the CG model provided an

even finer description of target distributions. As it is evident, the CG forcefields are able to

capture all essential features recorded with the atomistic model based on the mapping per-

formed. Note however that the shown distribution of nearest neighbors is an approximation

based on spherical sampling as discussed previously (and not the one from SANN analysis).

Coarse-graining of polymers aims to facilitate the modeling of long macromolecules. To

this extend, it is informative to examine how successive local degrees of freedom vary using

common measures as the distribution of internal separations as well as the chain end-to-end
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FIG. 5. Distribution of a) bond lengths, b) bending angles, c) dihedral angles, d) distance between

nonbonded pairs and c) number of nearest-neighbors as produced by the CG-CN forcefield (lines)

and mapped UA trajectory (target, symbols) at 298 K. At higher temperatures the agreement is

more favorable.

distance. The average separation of internal segments casted in the form of characteristic

ratio is presented in Figure 6a. As seen all models capture well the average distances in

close agreement to polyisoprene’s conformational characteristics.30 Beyond a small number

of monomers the chains resemble gaussian coils; the whole distribution of chain end-to-end

distances is presented in Figure 6b where again a quantitative match between all models is

observed. However, if we consider the separation between a small number of segments (1-4,

interacting via dihedral and density potential terms) we find that while the coarse-grain

models capture the average separation (see Figure 6a) they fail to quantitatively describe

the distribution of distances. Obviously capturing the dihedral distribution (internal coordi-

18

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
43

24
5



nates) does not guarantee a similar result in Cartesian coordinates. Atomistic models retain

excluded volume between repeat units separated by three monomers while we opted to ex-

clude such interactions between corresponding coarse-grain beads. Another option would

be to include direct non-bonded interactions however we found that the general non-bonded

potential is not necessarily applicable between such pairs. In fact, even in atomistic force-

fields the inclusion of a portion of non-bonded interactions between atoms interacting via

the dihedral potential is a design variable. Given the satisfactory agreement for average

separations as well as their distributions when examining segments separated by more CG

bonds we chose the scheme with no 1-4 non-bonded interactions. It is also important to

emphasize another feature present in our study with regards to 1-4 pairs: based on the

data from mapped atomistic trajectory such segments switch between the first and second

solvation shell of each other (symbols in Fig. 6c). This further cautions that development of

the CG forcefield is subject to coupling between individual terms and supports the selection

of an indicator function that clearly distinguishes between the two populations.

T (K) 413 353 298

Model UA CG-CN CG-NN UA CG-CN CG-NN UA CG-CN CG-NN

ρ (kg/m3) 836 835 836 866 866 866 894 894 894

κT × 105 (bar−1) 10.0 9.9 9.6 9.3 8.2 10.0 8.7 11.7 10.3

TABLE II. Comparison of density (ρ) and isothermal compressiblity (κT ) of CG models with UA

for various temperatures (T ) at 1 bar.

Finally, we compared the predictions of all three CG models on PI’s thermodynamic

properties. The CG-pair model performs satisfactory with regards to structure and confor-

mational properties at the target density, i.e, Rg ≈ 1.35 at 413 K. However, it overestimates

the pressure by three orders of magnitude, P ≈ 5×103 bar. Introducing the nearest-neighbor

potentials does not only help to drive the system to the target density (inset in Fig. 2a) un-

der an optimization process within the NPT ensemble but also assists in capturing density

fluctuations. The isothermal compressibility was calculated using:84

κT =
〈V 2〉 − 〈V 〉2

kBT 〈V 〉
(9)

The CG-NN and CG-CN models reproduce both the atomistic density and volume fluc-
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FIG. 6. a) Characteristic ratio (CN ) at as a function of number of monomers (N) in the 30mer

chain, b) distribution of chain end-to-end distances and c) distribution of distances for CG beads

separated by three bonds for mapped UA and CG models (CG-NN, CG-CN and CG-pair) at 353 K.

tuations with excellent agreement, i.e. ρ ≈ 835 kg/m3 and isothermal compressibility

κT ≈9.6×10−5 bar−1 for the CG-NN model in the NPT ensemble at 1 bar and 413 K.

Table II presents the thermodynamic and conformations properties predicted by the CG-

NN and CG-CN models at three temperatures compared to the UA model. It is important to

emphasize that in contrast to techniques that add potential terms to the extensive volume

of the system (or density) herein we aimed at capturing the fluctuations at local length-

scales; therefore it is not guaranteed that volume fluctuations would be matched. In fact,

upon close inspection we find that the atomistic model predicts a decrease of compressibil-

ity as we move to lower temperatures; this trend does not appear in the CG model. We

attribute this disagreement to the non-spherical packing of neighbors (or the limitation of a

spherical description of CG beads) as well as to potential coupling between neighboring sol-

vation shells. At lower temperatures we anticipate that the correlation length increases while

the solvation shells over which the many-body term applies become progressively smaller
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(Fig. 2d). Despite these small deviations, the agreement between the models is remarkable

given challenges present to capture both density and fluctuations with simpler CG models.28

D. Dynamics

In this section we examined the ability of the different CG models to qualitatively predict

the dynamics of the atomistic PI system. The main advantage of coarse graining in polymers

is the increase in length and time scales accessible by simulations. However, as discussed

in the Introduction, the direct use of the raw CG data for the quantitative predictions of

polymer dynamics is not straightforward due to the use of softer effective CG potentials.

Indeed, as a consequence of the softening of the energy landscape at the mesoscopic descrip-

tion, and the fact that we neglect the friction and random forces,7,17 the time in the dynamic

CG simulations does not correspond to the real time of the underlying polymeric system

and has to be properly scaled. For systems characterized by a scalar friction, such as the

homopolymer melts studied here, the scaling parameter (τ) is expected to be a scalar vari-

able, and corresponds, in the long time regime, to the ratio between the atomistic friction

coefficient and the one in the CG description.85,86

τ =
ζAT
ζCG

(10)

Due to complex and strongly fluctuating potential energy surface (PES), it is not possible

to derive an analytical prediction of τ . Thus, typically τ is calculated either from exper-

imental data or from detailed atomistic simulations.85,86 Here, we used data from the UA

MD simulations and matched the mean square displacement (MSD) of the CG particles over

a considerable time, where both amplitude and shape coincide. Thus, the derived scaling

factor determines the real time unit to which the CG time corresponds. In addition, such a

methodology provides direct insight into the spatio-temporal scales the particular CG sim-

ulation can be used for. The MD simulations for the CG-pair model were performed in the

NV T ensemble at the corresponding UA density while all other simulations were performed

in the NPT ensemble at 1 bar.
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FIG. 7. Mean square displacement (MSD) for segment (monomer) and chain center-of-mass from

UA and CG simulations (CG-CN, CG-NN and CG-pair) at different temperatures: a) 413 K, b)

353 K and c) 298 K.

1. Mean Square Displacement

We compared the segmental (monomer) and chain center-of-mass MSD of PI from the UA

and the different CG MD simulations at different temperatures in Fig. 7. In all cases the CG

data are scaled with a scaling factor, τ , obtained by overlapping the CG and the atomistic

curves in the long time (Fickian) regime. Note that although the simulation lengths are

shorter than the time scale of the Fickian regime, the scaling factors for the segmental

and chain MSD have similar values at the observed time. In Fig. 7a, for the two density

dependent CG models, CG-NN and CG-CN, we see that segmental τ = 20± 3; i.e. for this

specific system and state point, the CG model exhibits segmental dynamics that is about

20 times faster than the more accurate atomistic one.

It is clear from the data shown in Fig. 7 that atomistic and CG dynamics overlap for

length scales around 0.35 nm (MSDs of 0.1 nm2) for both chain and segmental MSD at all

temperatures. This length scale corresponds to the size of the PI monomer (similar to CG
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bead in the current 1:1 mapping). This is not surprising if we consider that a CG model

is not expected to accurately capture the displacement of the COM of the CG bead at

distances shorter than its size therefore it will underestimate such short-length displacement

due to the lack of necessary degrees of freedom. The time scale where segmental MSD

curves overlap is expected to be of the same order of magnitude as the characteristic time

of the CG bead length scale and increases as temperature decreases from around 0.04 ns

at 413 K to about 10 ns at 298 K. Such time scale for segmental dynamics is similar to

the α−relaxation time in PI which is about 0.04 ns for the UA model at 413 K. The chain

MSDs overlap at times above 0.1 ns at 413 K. The CG time scaling does not need to be

performed in the diffusive regime, since atomistic and CG MSD curves follow each other

even for shorter times. This is due to the fact that our CG model is rather close to the

underlying chemistry, i.e. a CG bead corresponds to a PI monomer. Such, a behavior

has been observed in the past for other polymers as well.17,85 Interestingly the CG-pair

potential gives rather similar dynamics. However note that the latter is performed in the

NV T ensemble; since as previously mentioned the NPT simulations with this model do not

yield the correct density. Thus, for the above spatio-temporal scales the proposed density

dependent CG model describes correctly, after scaling, both the segmental and the chain

translation dynamics of the PI melts as predicted by the atomistic simulations.

The scaling factor is the same for chain and segmental MSDs (within the error) but

varies greatly with temperature; from around 20 at 413 K, becomes about 100 at 353 K,

up to about 4000 at 298 K. Such a strong temperature dependence of the parameter τ has

been observed before for other CG polymer models87 and since the friction coefficient is

inversely proportional to diffusivity the decrease of temperature causes a more pronounced

deceleration of the Brownian dynamics of atomistic chains as compared to the CG ones.

Finally, we should note that as temperature decreases, approaching Tg, it is clear that the

atomistic short time (below 1 ps) dynamics become more heterogeneous; these motions

clearly cannot be captured by the CG model since they correspond to length scales below

the size of the CG bead (PI monomer). Note also that the time mapping is very similar if

a dynamical quantity describing the orientational dynamics, such as the chain end-to-end

vector auto-correlation function, is used.

Overall, the possibility to describe accurately the Brownian motion of a PI chain at such

small length and short time scales is one of the advantages of the present CG model and is
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directly related to the chosen mapping (1:1) scheme, that allows the model to be close to the

atomistic structure. However, we should note that as temperature decreases, approaching Tg,

it is clear that the atomistic local (segmental) dynamics of PI become more heterogeneous

for very short length scales; see atomistic MSD data of about 0.1 nm2 in Fig. 7c. Such

dynamical heterogeneities are related to local motions, such as bond vibrations and angle

librations, which clearly cannot be captured by the CG model, since they correspond to

length scales below the size of the CG bead. This observation supports the importance of

the atomistic detail in order to describe local dynamical modes of PI, particularly at low

temperatures; note though that the CG models can still be practical by providing initial

starting points for backmapping procedures.

2. Dynamic Structure Factor

The previous analysis examined the ability of the CG models considered in this work, to

predict the translational dynamics of PI chains (quantified via the MSDs) at the segmental

and chain-center-of-mass level, using as a reference the data from the detailed atomistic

simulations. Another quantity that typically probes molecular motions at multiple length

scales is the coherent dynamic structure factor S(q, t) (measured directly by neutron spin

echo, NSE experiments), defined as:

S(q, t) =
1

N

N∑
i=1

N∑
j=1

sin(qrij(t))

qrij(t)
/S(q, 0) (11)

The above equation can be used to extract S(q, t) directly, using the configurations that

are stored during the MD simulations, by recording the time correlation function of segments

i and j belonging to the same chain.88–90 The advantage of S(q, t) is that by varying the

value of the scattering vector q the dynamics over distinct length scales can be studied and

compared between different models.

Fig. 8 shows the normalized single-chain dynamic structure factor S(q, t) for different

values of the scattering vector (q = 3, 6, 9, and 12 nm−1) as extracted by the mapped

atomistic trajectory and the CG density dependent NPT simulations, at 413 K. All three

CG models have very similar dynamics as shown in MSD data, so in the following we report

only the data from the CG-NN simulations. Note, that the first peak of the static structure
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FIG. 8. Single chain dynamic structure factor S(q,t) from UA and CG-NN models at q = 3, 6, 9,

and 12 nm−1, at different temperatures: a) 413 K, b) 353 K and c) 298 K.

factor S(q) occurs at q = 18 nm−1. Moreover, as it was shown by Moe and Ediger88 for

high q values (above 12 nm−1) the total coherent S(q, t) is dominated by intramolecular

contributions. The data shown are presented as calculated from the original CG simulations

before any time re-scaling. Thus, as expected, S(q, t) from the CG model decorrelate much

faster than the atomistic ones.

A convenient dynamical quantity, used typically in NSE experiments to describe the

relaxation of over associated length scales of the polymer chain, is a characteristic time τNSE

defined as the area under a curve of S(q, t). To compute τNSE values from the atomistic and

the CG-NN dynamic simulations, we modeled the curves shown in Fig. 8 using two terms,

a fast exponential and a slower stretched exponential one:

S(q, t) = α exp(−t/τ0) + (1− α) exp(−(t/τ1)
β) (12)

Fig. 9 shows the relaxation time τNSE, for various q values, derived via the above proce-

dure for both the UA, τUANSE, and the CG, τCGNSE, PI models. As q increases, S(q, t) describes

the dynamics at smaller length scales of a polymer chain and as expected the dynamics
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become faster, i.e. the characteristic time τNSE decreases. For example, τNSE from the

atomistic simulations at 413 K ranges from about 2 ns for q = 3 nm−1 to about 20 ps for

q = 12 nm−1. The CG models follow the same trend for different q values supporting further

that similar dynamic characteristics are probed by the two models.
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FIG. 9. Average relaxation time of the single chain structure factor (τNSE) as a function of the

scattering vector (q) at 413 K (red), 353 K (green) and 298 K (blue).

As a final check of the consistency of the CG density dependent PI models to reproduce

qualitatively, the PI dynamics at multiple length scales, we report in Fig. 9 the τUANSE/τ
CG
NSE

ratios for all systems studied here. For each temperature the ratio τUANSE/τ
CG
NSE is very similar

to the time mapping factor, τ , reported above (see Fig. 7). This is not surprising since the

relaxation of S(q, t) is a measure of the Brownian motion of the PI chains, and as mentioned

above, τ is a measure of the ratio between the atomistic and the CG PI friction coefficient

(Eq. 10). Nevertheless, it is interesting that the ratio τUANSE/τ
CG
NSE does not depend on the

value of the q vector. This is a clear indication that the CG models predict consistently

the long-time dynamics of bulk PI, at multiple length scales, from the chain dimension

(radius of gyration) down to the size of a CG bead. However, naturally there are differences

between S(q,t) of atomistic and CG PI in the short time regime, as shown in Fig. 8. This

is clear in the first local decay of the atomistic model, which develops with increasing q

and decreasing T , while it is absent in the CG one. The above is in agreement with the

short time heterogeneous segmental dynamics of the atomistic PI at lower temperatures (see

Fig. 7), which, as mentioned above, cannot be described by the CG model.

Finally, note the strong dependence of τUANSE/τ
CG
NSE on temperature. Similar to the scaling

factor τ , it varies from around 20 for the higher temperature (413 K) up to several thousands
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for the lower one (298 K). Such a strong temperature dependence further emphasizes the

different temperature dependence of the friction factor of the atomistic and the CG models.

IV. CONCLUSIONS

We developed three CG models for polyisoprene melts and demonstrated the application

of multi-body neighbor potentials based on the local environment proposed by a more de-

tailed united atom model. We introduced such interaction terms through an order parameter

with a well-defined free energy minimum (≈ 14 − 15 first neighbors) based on a geometric

analysis. Nearest-neighbor potentials facilitate CG forcefield development by driving the

system to the target density under constant pressure simulations in addition to offering

another set of parameters to improve matching the target distributions.

The implementation of many-body potentials is a developing area with several options to

be explored such as the applicability of isotropic sampling of nearest-neighbors, the range

and shape of the introduced indicator function, the shape of the multi-body potential and

most importantly the algorithm to be employed to develop such terms. All these options

play a prominent role in the success of this approach. For the system studied herein, at all

state-points examined, we found that solely attractive multi-body interactions and isotropic

sampling suffice to provide an accurate description of the structure at all but the lowest

temperature point. We observed small deviations at 298 K (both in terms of spherical

packing as well as in the compressibility of the CG system), indicating that there could

be cases were improvements might be sought with on-the-fly calculations of the nearest-

neighbors. This was also the motivation for the original design of the SANN algorithm. We

found that a purely attractive multi-body term performs equally well to one that presents

a clear minimum; the pair nonbonded interactions adjust accordingly to match the target

distributions. With regards to the algorithm, it is important to emphasize that the ap-

plication of the Inverse Monte Carlo method, despite the numerical challenges it imposes,

offers clear advantages over sequential refinement of each potential term. Beyond the clear

coupling between pair and multi-body non-bonded terms we have demonstrated that for

polymers additional complications arise; i.e. the dihedral potential can be coupled to the

nearest-neighbor distributions.

Furthermore, we’ve characterized the dynamics of the developed CG models at different
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temporal and length-scales. We found that in all cases, the dynamics were accelerated with

a ratio that is highly sensitive on the temperature studied. Most importantly, we provided

evidence that the introduction of the many-body term did not alter the character of the

relaxation modes probed at different scattering vectors.

The bottom-up coarse graining methodology for PI presented here, is in general applica-

ble to other polymeric systems. From the methodology point of view we would like to relate

the hybrid particle-density field CG polymer models, as the one presented here, with many-

body CG potentials based on rigorous renormalization group theory approaches, such as the

cluster expansion techniques.49 In addition, future studies will focus both on improving tem-

perature transferability and exploring different systems, i.e. polymer mixtures, copolymers

or heterogeneous nanostructured systems in the presence of polymer/solid or polymer/liquid

interfaces.3,4,91,92 The development and implementation of multi-body interaction terms for

such systems presents significant potential as well as challenges.
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